Nonlinear acoustic propagation in two‐dimensional ducts
نویسندگان
چکیده
منابع مشابه
Acoustic propagation in 3-D, rectangular ducts with flexible walls
In this article some analytic expressions for acoustic propagation in 3-D ducts of rectangular cross-section and with flexible walls are explored. Consideration is first given to the propagation of sound in an unlined 3-D duct formed by three rigid walls and closed by a thin elastic plate. An exact closed form expression for the fluid-structure coupled waves is presented. The effect of incorpor...
متن کاملOn acoustic propagation in three-dimensional rectangular ducts with flexible walls and porous linings.
The focus of this article is toward the development of hybrid analytic-numerical mode-matching methods for model problems involving three-dimensional ducts of rectangular cross-section and with flexible walls. Such methods require first closed form analytic expressions for the natural fluid-structure coupled waveforms that propagate in each duct section and second the corresponding orthogonalit...
متن کاملActive Acoustic Noise Control in Ducts
In this paper existing classical and advanced techniques of active acoustic noise cancellation (ANC) in ducts are collected and compared. The laboratory plant used in experience showed a linear behaviour and so the advanced techniques were not used. Due to delay on the plant, the feedback classical techniques could not be applied. The best results were obtained with the modified filtered-refere...
متن کاملEvaluation of underwater acoustic propagation model (Ray theory) in a river using Fluvial Acoustic Tomography System
Underwater acoustics is widely used in many applications, such as oceanography, marine biology, hydrography, fishery, etc. Different models are introduced to simulate the underwater acoustic propagation in the oceans and the seas. In this study, the Ray Theory model is used to simulate the acoustic wave propagation in a shallow-freshwater river (Gono River) located in western part of Japan. The...
متن کاملSimulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects.
This study investigates the influence of blood flow on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors. A three-dimensional acoustic-thermal-hydrodynamic coupling model is developed to compute the temperature field in the hepatic cancerous region. The model is based on the nonlinear Westervelt equation, bioheat equations for the perfused tissue ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of the Acoustical Society of America
سال: 1974
ISSN: 0001-4966
DOI: 10.1121/1.1914681